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Abstract

A plane circular restricted three body problem is considered for small values of the ratio of the masses � of the main bodies. All
the limit problems as � → 0: the two-body problem, Hill’s problem, the intermediate Hénon problem and the basic limit problem,
are found using a Power Geometry. In each of them, solutions are isolated which are the limits of the periodic solutions of the
restricted problem as � → 0 and the limits of the families of periodic solutions (which are called generating families). Using the
generating families in the case of small � > 0, the families are studied which are started as the reverse (family h) and forward (family
i) circular orbits of infinitesimal radius around the body of greater mass. It is shown that, as � increases, there is a small change in
the structure of family h but family i undergoes infinitely many self-bifurcations with the formation of an infinite number of closed
subfamilies, each of which only exists in a certain range of values of �. A theory of the formation of horseshoe-shaped orbits and
orbits in the form of “tadpoles” is given, and the structure of the basic families containing periodic solution with these orbits is
indicated.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Formulation of the problem

Suppose three point bodies P1, P2 and P3 move in a single plane under the action of Newton’s law of gravitation.
The bodies P1 and P2 have masses m and m2 respectively while the mass of the body P3 is so small that its effect on
the bodies P1 and P2 can be neglected. We shall say that the mass of the body P3 is equal to zero. Then, the body P1
executes a Kepler motion with respect to the body P1. If the body P2 moves along a circle, the problem of the motion
of the body P3 is referred to as a circular restricted three-body problem or, briefly, as the restricted problem. It was
formulated for the first time by Euler.1

We shall assume that the units of mass, time and distance are chosen such that the sum m1 + m2, the gravitational
constant, the distance P1P2 and the angular velocity of the body P2 with respect to the body P1 are equal to unity. The
single parameter will then be � = m2 ∈ [0, 1/2]. If a system of coordinates which rotates together with the body P2 is
now introduced, then, in this (synodic) system of coordinates with its centre at P1, the position x1, x2 of the body P3
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is described by a Hamiltonian system with two degrees of freedom and a single parameter � (see [Ref. 2, Ch.3, §1])

(1.1)

where

(1.2)

A derivative with respect to t is denoted by a dot.
When � �= 0, the problem is not integrable in a finite form. The families of periodic solutions are of the greatest

interest as they form a kind of a skeleton of a certain part of the phase space. For a fixed value of the parameter � �= 0,
the periodic solutions of the Hamiltonian system (1.1) form single-parameter families and, in the case of a variable �,
two-parameter families.3

For example, the periodic solutions for the following values of � (the bodies P1 − P2 − P3 are shown in brackets):

3.5 × 10−9 (Saturn - Janus (1980S1) - Erimetheus (1980S3));4,5

6.7 × 10−6 (Saturn - Mimas - a particle of Saturn’s ring);6

5.178 × 10−5 (Sun - Neptune - a body of the Kuiper belt);7–9

9.538 × 10−4 (Sun - Jupiter - asteroid);10–14

1.215 × 10−2 (Earth - Moon - spacecraft).15

In addition, periodic solutions were calculated for other small values of � and, also, for large values: � = 0.4 (Ref.
16) and � = 0.5 (Ref. 17) (in relation to the dynamics of particles and planets in the field of a double star).

It is not possible here to list all the papers on this theme (there are hundreds of them); we mainly mention those
papers which are directly associated with the subject of this paper.

The majority of the papers are concerned with calculating of the families of periodic solutions for fixed values of
� where no developed theory is required. However, there is another approach: to consider limit problems as � → 0
and their regular and singular perturbations for � > 0. This enables one to construct a theory of the families of periodic
solutions for small �.18,2,11–14,19–22 This theory will be briefly described here and the results obtained from it will be
compared with numerical results.

1.2. The contents of this paper

Four limit problems, which exist as � → 0, are formulated in Section 2 and the periodic solutions of two of them
(the problem of the two bodies P2 and P3 and Hill’s problem) are considered.

The limit problem, that is, system (1.1), (1.2) when � = 0, is considered in Section 3. It is integrable, and all of its
solutions can be described as it was done earlier in Ref. 2,Ch. III - VI. The phase space of this problem when � = 0 is
complicated on account of collisions between the body P3 and the body P2, as a result of which the arc-solutions are
formed. When � > 0, these collisions induce singular perturbations that leads to a further complication of the structure
of the phase space.

The generating solutions, which are the limits of the periodic solution as � → 0, are isolated out from the periodic
solutions and families of arc-solutions of the principal limit problem. They form generating families, which are
considered in Section 4. For solutions with perturbations which are regular with respect to �, the separation of the
generating families and the study of the generated families (that is, their perturbations for � > 0) is carried out using a
normal form.2 For solutions with singular perturbations, for which a collision between the bodies P2 and P3 occurs,
the separation of the generating families is based either on the generalized Broucke principle11–14,20 or on the theory
of singular perturbations.21

Two generating families are considered as examples in Sections 5 and 6: one of them is simply organized and
changes slightly as � increases from 0 to 1/2, while the other is organized in a more complicated manner and, when
� increases from zero, it undergoes an infinite number of self-bifurcations, and an infinite number of closed subsets
bifurcate from it, which only exist in small ranges of � values.
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A theory of perturbations for periodic orbits having the shape of “horseshoes” and “tadpoles” (these are traditional
names) is constructed in Section 7. The structure and mutual arrangement of the main families containing these solutions
are investigated.

Sections 5 and 6 have been jointly written while the remaining sections were written by the first author. The results
of the Subsections 6.2–6.4 and Section 7 are being published for the first time.

1.3. The principal properties of system (1.1) and its periodic solutions23,2

The Orbit is the projection of the solution xj(t), yj(t) (j = 1, 2) of system (1.1) onto the plane x1, x2. If two families
of periodic solutions intersect and the periods in one family are q times greater than the periods in the other family, we
shall say that the first family has a (local) multiplicity q.

System (1.1) is transformed into itself under the substitution

(1.3)

which is its symmetry. Under the symmetry (1.3), the plane x2 = y1 = 0 is invariant and is called (Ref. 2, Ch. III) the
plane of symmetry. The solutions of system (1.1) which are transformed into themselves under substitution (1.3) are
symmetric solutions. A symmetric periodic solution intersects the plane of symmetry twice, and their family intersects
II along two curves which are the characteristics of the family. It is convenient to track the mutual positions of the
solutions along these intersections.

The family of periodic solutions of system (1.1) for a fixed value of the parameter � is said to be natural if it is
continued on both sides up to the natural ends, which can be a termination at a fixed point or in another family of
periodic solutions, the contraction of the orbit into a point or its departure to infinity, the tendening of the period to
zero or infinity, and, finally, a natural family can be a closed family.

The general properties of families of periodic solutions of a Hamiltonian system with two degrees of freedom
have been presented in detail (Ref. 3,§ 1–3) and briefly (Ref. 2, Ch. II, § 4). For information on families of symmetric
periodic solutions, see Ref. 3, § 5. Each symmetric solution M of a family F has a period T, a trace Tr of the monodromy
matrix of the system in variations and two points of intersection with the symmetry plane II (over a half period). The
values of the Hamiltonian function and the coordinates of the intersections with the plane of symmetry may serve as a
parameter of the family.

In system (1.1) when � ∈ (0, 1/2], the families of symmetric periodic solutions are two-parameter families and
they can therefore have singularities with the codimension 1 and 2; several of them have been studied previously.2,3

However, when � = 0, system (1.1) is degenerate.

2. Limit problems

2.1. Derivation of the limit problems (Refs. 24–26, Ch. IV, § 4,27,28, § 1)

In order to find all of the first approximations of the restricted three-body problem close to the body P2 in the case
of small �, it is necessary to introduce the local coordinates

and to expand the Hamiltonian function in these coordinates. After the expansion of 1/

√
(�1 + 1)2 + �2

2 in a MacLaurin
series, the Hamiltonian (1.2) takes the form

(2.1)
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Fig. 1.

where f is a convergent power series which does not contain terms of order less than three. It is known26 that the support
S1 of the series on the right-hand side of equality (2.1) consists of the points

where k, l ≥ 0, k + 2l ≥ 3, and of the segment J joining the points (−1, 0, 0, 0, 1) and (0, −1, 0, 0, 1). This segment is

the support of the term �/

√
�2

1 + �2
2. The cone of the problem26 is

as �1, �2, � → 0.
We now make the projection

where

The set S′′
1 of these points R′′ consists of

The closure of the convex hull of the set S′′
1 is the polyhedron Γ ⊂ R3. The surface of the polyhedron � consists of

the faces Γ
(2)
j , the edges Γ

(1)
j and the vertices Γ

(0)
j . A truncated Hamiltonian function Ĥ

(d)
j , which is the sum of those

terms of series (2.1), the points of which R′′ belong to Γ
(d)
j , corresponds to each such element Γ

(0)
j . The truncated

Hamiltonian functions Ĥ
(d)
j are different first approximations of the function (2.1), which hold in different domains of

space (�1, �2, �1, �2, �). The cone of the problem is

The polyhedron � is a semi-infinite trihedral prism with a slanting base (Fig. 1). It has four faces and six edges.
The face Γ

(2)
1 serves as the slanting base of the prism �. It contains the vertices (0, 2, 0), (2, 0, 0), (−1, 0, 1) and

the point (1, 1, 0). Its normal vector N′′
1 = −(1, 1, 3) ∈ K′′. The truncated Hamiltonian function

(2.2)

corresponds to it. The power transformation

(2.3)
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reduces the function (2.2) to the form (2.2), where � = 1 and all the �i, �i are replaced by �̃i, �̃i. The Hamiltonian
system

(2.4)

describes Hill’s problem,29 which is nonintegrable.
The face Γ

(2)
2 contains the points (0, 2, 0), (1, 1, 0), (2, 0, 0) and (k, 0, 0). Its normal vector N′′

2 = −(0, 0, −1) ∈ K′′.
The truncated Hamiltonian function Ĥ = Ĥ

(2)
2 , which is obtained from the function H (1.2) when � = 0, corresponds

to it. We call problem (2.4) the basic limit problem.
The remaining two faces have the normal vectors (0, −1, 0) and (0, 1, 2), lying outside the cone of the problem K′′,

and the corresponding truncations of the Hamiltonian function are therefore not of use.
We now consider the edges. Of the six edges, one is improper. It passes through the point (0, 2, 0) parallel to the

vector (1, 0, 0). On three edges q = 0, that is, the truncated Hamiltonian function for them is independent of �1 and �2,
and, in the case of the solutions of the corresponding Hamiltonian system, �1, �2 = const, that is, they are of no interest.
Two edges remain.

The edge Γ
(1)
1 contains the points (0, 2, 0) and (−1, 0, 1) of the set S′′

1. The corresponding truncated Hamiltonian
function

(2.5)

describes the two-body problem involving P2 and P3 in a fixed system of coordinates. The power transformation

(2.6)

transfer it the Hamiltonian system (2.4) with a Hamiltonian function of the form (2.5), where �j, �j, � are replaced by
�̃j, �̃j, 1 respectively.

Suppose Γ
(2)
0 is the face which passes through the points (0, 2, 0), (2, 0, 1), (−1, 0, 1). Its external normal N′′

0 = (0,

1, 2) and the vector of the normal to the face Γ
(2)
1 is N′′

1 = −(1, 1, 3). Since the edge Γ
(1)
1 is the intersection of the faces

Γ
(2)
0 and Γ

(2)
1 , its normal cone consists of the vectors N = (n1, n2, n3) = �N′′

0 + �N′′
1, where �, � > 0 and, if � < 3�/2

and � > 0, then n1/n3 ∈ (1/3, ∞).
The edge Γ

(2)
1 contains the points (2, 0, 0), (1, 1, 0), (0, 2, 0) of the set S′′

1. The truncated Hamiltonian function (2.2)
with � = 0 corresponds to it. This function describes an intermediate problem (between Hill’s problem and two-body
problems involving P1 and P3) which is integrable. This first approximation was introduced by Hénon.30 Since the
vector of the normal to the face Γ

(2)
1 is N′′

1 = −(1, 1, 3) and the vector of the normal to the face Γ
(2)
2 is N′′

2 = (0, 0,

−1), the normal cone to the edge Γ
(1)
2 consists of the vectors N = (n1, n2, n3) = �N′′

1 + �N′′
2, where �, � > 0, that is

n1/n3 ∈ (0, 1/3).
We put � = � = 1 and then obtain the vector −(1, 1, 4) lying in the normal cone of the edge Γ

(1)
2 . The power

transformation

(2.7)

corresponds to it.
In the coordinates �̃j, �̃j as � → 0, we obtain the limit Hamiltonian function (2.2) with � = 0, where, instead of �j,

�j, there are �̃j and �̃j respectively, and system (2.4). So, for the vectors N = (n1, n2, n3) lying in the normal cone of the

edge Γ
(1)
1 and the relation �

def=n1/n3 ∈ (1/3, ∞) for the vectors N from the normal cone of the face Γ
(2)
1 , we have � = 1/3;

for the vectors N from the normal cone of the edge Γ
(1)
2 , we have � ∈ (0, 1/3), and for the vectors N from the normal

cone of the edge Γ
(2)
2 , we have � = 0. Hence, if

√
�2

1 + �2
2 = O(��), then, very close to the body P2, that is, for � > 1/3,

the two-body problem for P2 and P3 with the Hamiltonian function (2.5) will be the first approximation of the restricted
problem with Hamiltonian function (2.1); when simply close, that is, for � = 1/3, it is Hill’s problem with Hamiltonian
function (2.2); further from the body P2, that is, for 1/3 > � > 0, it is the intermediate Hénon problem; and, remote from
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the body P2, that is, for � = 0, it is the basic limit problem. Close to the body P2, the periodic solutions of the restricted
problem are perturbations both of the periodic solutions of all the above-mentioned four first approximations as well
as of the results of the splicing of the hyperbolic orbits of the two-body problem for P2 and P3 with the arc-solutions
of the basic limit problem or the intermediate problem. The periodic solutions of the intermediate problem have been
used31–35 as generating solutions in the search for the periodic quasisatellite orbits of the restricted problem.

So, in the neighbourhood of the body P2, there are three different desingularizations (2.6), (2.3) and (2.7) (that is,
changes of the coordinates resolving the singularity) corresponding to the edge Γ

(1)
1 , the face Γ

(2)
1 and the edge Γ

(1)
2 .

Of these, only desingularization (2.3) was known in the case of Hill’s problem, that is, for the face Γ
(2)
1 .

We consider the three limit problems (the two-body problem for P2 and P3, Hill’s problem and the basic problem)
below. Hénon’s intermediate problem is explicitly integrable. It has been quite extensively investigated in Refs. 30–35
and is not considered here.

2.2. The two-body problem for P2 and P3 is described by the Hamiltonian system

(2.8)

with Hamiltonian function (2.5), where � = 1. This is an integrable problem and its solution has been described in detail
in many books (see Ref. 36, for example). Here, we merely note that it has two families of periodic solutions with
circular orbits: the family f with retrograde motion and the family g with direct motion. There are also other periodic
solutions. However, only the two families remain under the perturbation of the restricted problem, and the remaining
solutions are destroyed (Ref. 2, Introduction, p. 8; 20, §5.6). In addition, we note the existence of hyperbolic flyby
orbits of the flight of the body P3 close to the body P2. The two-body problem is considered in greater detail below in
Subsection 3.2.

2.3. Hill’s problem (Refs. 30,37,14, § 2)

Is described by system (2.8) with the Hamiltonian function H from (2.2), where � = 1. There are other derivations
of Hill’s problem [Ref. 23, Ch. 10].

System (2.2), (2.8) possesses two symmetries:

(2.9)

(2.10)

In particular, � = {�2 = �1 = 0} is the plane of symmetry (2.10). Only periodic solutions with the symmetry (2.10)
are considered below. The family of such solutions has two characteristics in the II plane. System (2.2), (2.8) has a
singularity when �1 = �2 = 0 and two fixed points L1 = (−3−1/3, 0, 0, −3−1/3), L2 = (3−1/3, 0, 0, 3−1/3). At these points, the
matrix of the linearized system (2.8) has two real eigenvalues and two pure imaginary eigenvalues, and a single family
of periodic solutions therefore originates from each point L1 and L2. Hill’s problem (2.2), (2.8) is non-integrable and
has been investigated numerically. Hénon30,37 has described its family of periodic solution most fully and represented
their characteristics in −2Ĥ, �1(0) coordinates. These characteristics are shown in the II plane in �1, �2 coordinates
in Fig. 2 (Fig. 2, which was published for the first time by A. D. Bruno,38 was made using the detailed tables sent
by Hénon in 1979 which also contained the coordinates of the second point of intersection of the solution with the II
plane). In Fig. 2, each family of periodic solutions is represented by two characteristics. We now enumerate the main
families.

The family a leaves from the point L2 (Ref. 30, Table 2).
The family c leaves from the point L1 (Ref. 30, Table 2).
The family f starts with the circular orbits around the point �1 = �2 = 0 with retrograde motion, that is, clockwise (Ref.
30, Table 3). Its solutions possess the two symmetries: (2.9) and (2.10).
The family g starts with the circular orbits around the point �1 = �2 = 0 with direct motion (Ref. 30, Table 4). Its
solutions also possess the two symmetries: (2.9) and (2.10). It contains a critical solution M with �1 = 0.28350 and
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Fig. 2.

Table 1

k T/(2�) C Tr ã(0) ẽ(0) ã(T/2) ẽ(T/2)

1 0.50 −1 [−2, +∞] −1 −1 1 −1
2 1.50 2.679465 +∞ −1.47175 0.43384 ∓∞
3 1.99 2.970940 [+∞, −∞] −1.58720 0.63003 1.603 1.376
4 2.00 2.970934 [−∞, 2] −1.58740 0.62996 1.587 1.370
5 2.00 0.629961 2 −1.58740 0 1.587 ±2
6 2.00 −1.711013 [2, −∞] −1.58740 −0.62996 1.587 −1,370
7 2.19 −1.785103 [−∞, +∞] −1.76225 −0.53648 51.553 −2.019
8 2.50 −1.491531 +∞ −1.96669 −0.29891 0.511 −3.954
9 3.50 2.414539 +∞ −2.41232 0.23485 ∓∞
10 3.99 2.929162 [+∞, −∞] −2.51977 0.39686 2.539 1.606
11 4.00 2.929161 [−∞, 2] −2.51984 0.39685 2.519 1.603
12 4.00 0.396850 2 −2.51984 0 2.519 ±2
13 4.00 −2.135461 [2, −∞] −2.51984 −0.39685 2.519 −1.603
14 4.05 −2.141393 [−∞, +∞] −2.56117 −0.38821 5.877 −1.829
15 4.50 −1.645629 +∞ −2.82190 −0.19649 0.358 −4.790
16 5.50 2.312067 +∞ −3.20444 0.17058 ∓∞

Tr = 2. In Fig. 2, the solution M is represented by the two points: M1 and M2. The solution M divides the family g into
two parts: g+ (Ref. 30, the upper part of Table 4, a < 1) and g− (Ref. 30, the lower part of Table 4, a > 1).
The family g′ intersects the family g at the solution M (Ref. 30, Table 5). The solution M subdivides the family g′
into two parts: g′− (Ref. 30, the second column of Table 5) and g′

+ (Ref. 30, the third column of Table 5 with all the
minus signs replaced by plus signs). The parts g′

+ and g′− turn into one another under the transformation (2.9).
The family f3 is the family g3 (Ref. 37, Table 1). It intersects the family f twice as (locally) a triple family. Its solutions
possess two symmetries: (2.9) and (2.10).

Hénon30 found the limits of the periodic solution of the family a, . . ., g′ as −2H → +∞ and the other limit periodic
solutions as solutions of the intermediate problem. By treating Hill’s problem as a perturbation of this intermediate
problem, Perko39,40 proved, for large −Ĥ , the existence of the family f and a denumerable number of families g(n),
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Fig. 3.

(n = 1, 2, . . .). However, this hypothesis regarding the arrangement of the families g(n) (Ref. 40, the end of Section 2
and in Fig. 3) is erroneous as the intersection all the families g(n) at the solution M is impossible. It is seen from this
that the six families a, . . ., f3 which have been calculated are insufficient to describe the structure of all the families of
periodic solution with the symmetry (2.10). It would be necessary to calculate further locally multiple families which
intersect the family g′ at the resonance solutions with Tr = −2, −1, 0.

The restricted problem is a regular perturbation of Hill’s problem with a small parameter �1/3. Perko41 began the
study of perturbations for the families a, c, f, g, g′, g(n). Since the restricted problem only has the symmetry (2.10)
and does not have the symmetry (2.9), the latter symmetry is destroyed under the perturbation and, moreover, close to
the solution M, at which the families g and g′ intersect, bifurcation of these families must occur. The character of this
bifurcation has not been specially studied but it is known due to calculations of the families of periodic solutions of
the restricted problem.

In principle, all perturbations of the periodic solution of Hill’s problem can be investigated using a normal form but
this has still not been done.

3. The basic limit problem2,18,20

3.1. Introduction

The basic limit problem is problem (1.1), (1.2) with � = 0, that is, the two-body problem for P1 and P3 in a rotating
system of coordinates for which, in the four dimensional phase space x1, x2, y1, y2, the plane

(3.1)

corresponding to the body P2 is removed and, in order to describe its solution, we therefore initially consider the
two-body problem for P1 and P3 in the fixed (sidereal) system of coordinates X1, X2, Y1, Y2 and, then, in the (synodic)
system x1, x2, y1, y2, which rotates together with the body P2:

(3.2)

After this, we isolate out the new solutions which correspond to collisions between the body P3 and the body P2 and
arise after the removal of plane (3.1) from the phase space. Then, in Section 4, we describe the generating solutions,
that is, those solutions which are the limits of the solutions of problem (1.1), (1.2) as � → 0. After this, in Subsection
4.3 and Sections 5 and 6, we consider examples of generating families of periodic solutions, that is, when � = 0 and
the families which are generated by them when � > 0.

3.2. The two-body problem in a fixed system of coordinates (Ref. 2, Ch III; Ref. 36)

Suppose the body P3 of zero mass moves in the plane X1, X2 under the action of the Newtonian attraction of the
body P1 of mass m > 0 which is at rest at the origin of coordinates X1 = X2 = 0. The motion of the body P3 is described
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by the Hamiltonian system

(3.3)

In particular, Ẋj = Yj .
System (3.3) has three independent integrals: these are the energy integral and the space integrals

(3.4)

and 	̃ is the length (angle) of the pericentre, that is, the points of the orbit with the smallest value of (X2
1 + X2

2)
1/2

.
The orbits in the plane X1, X2 are ellipses (a > 0), parabolae (a = 0) and hyperbolae (a < 0) with a focus at zero:

X1 = X2 = 0, where the body P1 is located. An elliptic orbit is uniquely defined by three parameters: the semi-major
axis a, the eccentricity e and the length of the pericentre 	̃. The magnitudes of a and e are related to integrals (3.4) by
the equalities

(3.5)

The position of the point P3 in an orbit is given either by the true anomaly � or by the mean anomaly l or the
eccentric anomaly u. All the anomalies are angles measured from the direction to the pericentre such that, when the
point P3 passes across the pericentre � = l = u =2�k and, when it passes across the apocentre, � = l = u =2�k + �, where
k is an integer. The period of rotation Ts obeys Kepler law

(3.6)

The sign of the quantity c, which is determined by the last equality of (3.4), indicates the direction of motion along the
ellipse: it is a direct motion when c > 0 and a retrograde motion when c < 0. We put N = 2πT−1

s and n = Nsgnc, and,
then, n is the mean angular velocity of the motion of the point P3 along the ellipse. According to inequality (3.6),

(3.7)

If e = 0 (am = c2), the orbit is a circle of radius a and the quantity 	̃ here loses its meaning. If e = 1 (c = 0), the orbit
is a segment of length 2a, one end of which is located at zero. The motion along the segment starts with the point P3
leaving from the point P1 and, after a time Ts, it terminates with the collision of these points. The direction of motion
(the sign of n) loses its meaning here.

3.3. Synodic orbits

According to equality (3.2), in the rotating (synodic) coordinates x1, x2, the motion is described by the system of
equations (1.1), where

(3.8)

and integrals (3.4) take the form

(3.9)

On changing to the rotating system of coordinates, the conical sections are twisted into more complex orbits and
only the circular obits (e = 0) retain their shape. A synodic orbit, corresponding to elliptic motion, is confined in the
annulus

(3.10)

The motion occurs with a mean angular velocity n - 1. If the number N is irrational, then the orbit is never closed and
its points are everywhere dense in the above mentioned annulus. If N is rational, we put

(3.11)
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where p > 0 and q are relatively prime numbers. So, in the case of rational N, a synodic orbit is closed after q revolutions
about the origin of coordinates if n > 0 and, after q′ revolutions if n < 0. The synodic period of such orbits is T = 2�p.

All the synodic orbits with fixed n and e are obtained from one such orbit as it revolves about zero by same angle.
A unique point of a sidereal orbit corresponds to each point of a synodic orbit. On the other hand, generically, several
points of a synodic orbit correspond to a single point of a sidereal orbit and, in fact, p + q points for a rational N and
a denumerable family in the case of irrational N. The points of the minimum (maximum) polar radius r for a synodic
orbit correspond to the pericentre (apicentre) of the sidereal orbit and, at these points ṙ = 0.

In the four-dimensional spaceR4 of the variables x1, x2, y1, y2, the Hamiltonian function (3.8) is analytic everywhere

apart from the plane P∗
1

def={x1 = x2 = 0}, which corresponds to the body P1. In this domain �0
def=R4\P∗

1 , we isolate
the set � by the condition a > 0 (see equality (3.9)). The set � consists of all of those and only those trajectories the
sidereal orbits of which are ellipses.

We will now consider the intersections of the trajectories from the set � with the plane of symmetry � = {x2 = y1 = 0}.
In this plane, it is more convenient to introduce the new coordinates ã, ẽ:

(3.12)

Then,

(3.13)

In the coordinates ã, ẽ, the intersection of the set � with the plane � is the zone

(3.14)

The two straight lines ẽ = 1 and ẽ = −1 correspond to circular orbits with a period T and a trace Tr:

(3.15)

if n �= 1. If n = 1, the corresponding points ã = ±1, ẽ = 1 are fixed. On the straight line ẽ = 1, the sidereal motion is
direct (the set Id) and, on the straight line ẽ = −1, it is a retrograde motion (the family Ir).

The four zones ẽ ∈ (−2, −1), (−1, 0), (0, 1), (1, 2) correspond to elliptic sidereal orbits with a direct motion if ẽ > 0
and retrograde motion if ẽ < 0. In the case of fixed a = |ã| with a rational N = a−3/2 = (p + q)/p, the corresponding
synodic orbits are periodic with a period T = 2�p and a trace Tr = 2 (the families E±

N ). All the points of these zones
either correspond to pericentres if |ẽ| > 1 or to apocentres if |ẽ| < 1.

The three straight lines ẽ = 0, ±2 correspond to solutions in which collisions occur between the body P3 and the
body P1. Here, the straight lines ẽ = ±2 can be considered as being coincident; they correspond to the points of
collision.

3.4. The restricted problem when μ = 0 (Ref. 2, Ch. III, § 3)

Suppose the mass of the body P2 is equal to zero. Although the body P2 does not attract the body P3, collisions
between them are possible. This is the difference between the restricted problem when � = 0 and the synodic two-body
problem. The synodic motion of the body P3 is now described by the same system (1.1) with the same Hamiltonian
function H (3.8) but now in the domain � = �0\P∗

2 , where P∗
2 is the plane x1 = 1, x2 = 0, corresponding to the body P2

in phase space. The points of collision of the body P3 with the body P2 (that is, the points corresponding to the solution
of the two-body problem lying in the plane P∗

2 or, what is the same, the point x1 = 1, x2 = 0 in an orbit of the two-body
problem) partition the solution of the two-body problem into pieces which will now no longer be a continuation of
one another. Each such piece is an independent solution of the restricted three-body problem with � = 0. The pieces
which start and end at the points of collision are of particular interest. We shall call them arc-solutions or solutions
with successive collisions. In the restricted problem, the arc-solutions play approximately the same role as periodic
solutions.

The sidereal orbits of the body P2 (the circle) and of the body P3 (the ellipse) are shown in Fig. 3. Collisions can
only occur at the points of intersection of these orbits Q1 and Q2. Suppose two successive collisions occur at times
t1 < t2.

Two cases are possible.
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Case 1. The collision at t2 occurs at the same point Q1 of the sidereal plane as the collision at the time t1. The bodies
P2 and P3 then each make several revolutions in their own orbits between the two collisions. For this, their sidereal
periods of rotation must be commensurate, that is, N is a rational number. An arc is a periodic trajectory with a deleted
point. The set of such arcs is denoted by TN.

Case 2. The collision at the time t2 occurs at the other point Q2 of the sidereal plane. The points Q1 and Q2 are
symmetric about the X1 axis (see Fig. 3). It follows from symmetry considerations that the bodies P2 and P3 are located
on the X1 axis at the time (t1 + t2)/2. The corresponding synodic orbit is symmetric about the x1 axis. The set of such
arc-solutions is denoted by S.

Each arc-solution is found for the solution of the two-body problem for specific values of a, e and c. The set of
arc-solutions (that is, solutions with successive collisions) consists of a denumerable set of the one-parameter families
TN existing for all rational N < 22/3 ≈ 1.587 and consisting of asymmetric arc-solutions and a denumerable set of single-
parameter families S consisting of symmetric arc-solutions which also decompose into the families Ai, Bj, Ckl, where
the integers i ≥ 0, j ≥ 1, l ≥ k ≥ 1. Hénon18 found the families S for the first time and a theory of them families was then
developed (Ref. 2, Ch. III–VI; Ref. 20). The structure of the families TN has been studied (Ref. 2, Ch. III). Without
dwelling on a statement of this theory, we merely note some of its implications.

In the � plane and in the coordinates ã, ẽ, the curve

corresponds to the body P2. It is represented by the dot-dash curve in Fig. 4. A collision is only possible within the
annulus

In Fig. 4 (Fig. 4a is on the left-hand side and Fig. 4b is on the right-hand side), the domains 	1, 	2, 	3, 	4 bounded
by the dashed curves and the curve P2

** correspond to it. The characteristic curves of the families S are represented in
these domains. Note that each symmetric arc-solution intersects the � plane at a single point and their one-parameter
family intersects along a curve which is called the characteristic of the family. The orbits of the arc-solutions Ai, Bj,
Ckl have been presented in Ref. 2, Ch. IV.

4. Generating families of periodic solutions

4.1. Generating solutions

Suppose the periodic solution M� of the restricted problem (1.1), (1.2), which exists for a certain � > 0 can be
continued continuously up to � = 0 and, in the limit, gives a solution (not a point) of one of the limit problems. This
limit is called a generating periodic solution. According to Hénon (Ref. 20, § 2.10), there are three forms of generating
periodic solutions depending on the limit M0 in the main limit problem.

The first form. All points of the solution M0 are separated from the body P2.
The second form. The solution M0 has at least one point on the body P2 and one point outside the body P2.
The third form. The solution M0 lies as a whole in the body P2.

A generating solution of the first form is a periodic solution of the synodic problem for the two bodies P1 and P3. A
generating solution of the second form consists of several arc-solution of the basic limit problem. Since, when � > 0,
the restricted problem has the integral H from (1.2), all the arc-solutions which are parts of generating periodic solution
have the same value of the integral H or the Jacobi constant C = −2H. A generating periodic solution of the third form
is a periodic solution of Hill’s problem or the intermediate Hénon problem. The limit of the family of periodic solutions
as � → 0 is called the generating family. It can consist of generating periodic solutions of different forms.
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Fig. 4.

4.2. Generating solutions of the first form

All generating periodic solutions of the first form and their bifurcations have been investigated (Ref. 2, Ch. VII,
VIII). All symmetric periodic solutions relate to them. They form two families Id and Ir with circular orbits and a
denumerable number of families E±

N with elliptic orbits with a fixed semi-major axis (one or two families for each
rational N = a−3/2 > 0) (Ref. 2, Fig. 11). Bifurcation between these families occurs at sites of the intersection of the
family Id with the families E(p+1)/p for p = 1, ±2, ±3, . . .. We denote these intersections by Id(N) = Id ∩ EN. In the
plane II, points with N = (p + 1)/p for p = 1, ±2, ±3, . . ., that is, ã = ±N−2/3, ẽ = 1 correspond to these intersections
of the families. They divide the family Id in pieces Idp with p/(p − 1) > N > (p + 1)/p for p = 1, ±2, ±3, . . . and the
family E(p+1)/p into two parts: E+

(p+1)/p (with 	̃ = 0) and E−
(p+1)/p (with 	̃ = �). The bifurcations of the pieces Idp

with the families E±
N are shown in Fig. 5. Perturbations of period T and trace Tr have been presented (Ref. 2, Table 2

Appendix) for certain families EN.
In addition, there are families G1/p of asymmetric generating solutions for p = 1, 2, .... For them, N = 1/p. The family

G1 originates from the fixed Lagrange point L4 as a family of short-period solutions, intersects with the family E−
1/p

and terminates at the fixed point L5. The family G1/p with p > 1 is closed, it intersects with the family E−
1/p twice and

does not intersect with the family E+
1/p.
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Fig. 5.

4.3. Generating solutions of the second form

When � = 0, every symmetric periodic solution with a collision of P3 with P2 is formed by arc-solutions from
the families S and an even number of symmetrically arranged arcs from the families TN, and the value of the Jacobi
constant C is the same for all the arcs (Ref. 2, Ch. III, IV). Apparently, each such combination is generating. This,
however, has only been proved for the simplest of them consisting of only one or two arc-solutions.42 The families S,
TN and their characteristics in � have been studied (Ref. 2, Ch. III–V). Bifurcations between the families of symmetric
periodic solutions occur at the sites of intersection of the families Id, Ir, E+

N and S. For a rational N = (p + q)/p, N �= 1,
intersections of the family EN with the families S occur in orbits for which

where 
 is a certain function. Specific orbits (Ref. 2, Ch. VI, Sect. 3, Ch. IV, Theorem 2.4), which we denote by EN(k),
correspond to these values of ẽ.

There are two other orbits of intersection (Ref. 2, Ch. III, 3):

E1(−1) = {N = 1, ẽ = −1} (here the families Ir, E+
1 , E−

1 and S intersect);
E1(1) = {N = 1, ẽ = 1} (here the families Id, E+

1 and S intersect).

So, in the orbits Id(1 + 1/p) and EN(k), bifurcations occur between pieces of the generating families of the symmetric
periodic solutions.

The extremal orbits (with respect to the Jacobi constant C) of the families S also a play considerable role in the
formation of the generating families. A theory of them has been developed (Ref. 2, Ch. IV, V) and numerical values
have been published.43 For each family S of the type Ai and Bj, the initial extremal of an orbit S(0) is selected and the
direction of the increase in the numbering is such that the extremal orbits are denoted by S(k), where the integer k can
also be negative. In the case of the families Ai, the orbit Ai(0) is a multiple of the orbit E1(−1), that is, ã = ±1, ẽ = −1.
In the case of the family Bj, the orbit Bj(0) is E1(1), that is, ã = 1, ẽ = 1. For the families Ckl, there are only two
extremal orbits: Ckl(1) when ẽ > 0 and Ckl(−1) when ẽ < 0. Tables of the families S are available.18

The basic generating families Id, Ir, E±
N, Ai, Bj, Ckl and TN have been described (Ref. 2, Ch. III, IV) and, also, the

points of intersection of their characteristics in the plane of symmetry II, which correspond to special solutions for
which the basic families intersect:

(4.1)
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Table 2

k T/(2�) C Tr ã(0) ẽ(0) ã(T/2) ẽ(T/2)

1 1/2 3.4668 −2 −0.4807 1 0.4807 1
2 1 3.1748 2 −0.6300 1 0.6300 1
3 1 1.5874 2 −0.6300 ±2 0.6300 ±2
4 1 0 2 −0.6300 −1 0.6300 −1
51 1 0.3027 [2, +∞] −0.6300 −0.4126 0.6300 −0.4126
61 1 1.7935 +∞ −0.5575 0 0.6657 −0.4978
71 1 2.8720 [+∞, 2] −0.6300 0.4126 0.6300 0.4126
8 1 3.1748 2 −0.6300 1 0.6300 1
9 3/2 3.0926 −2 −0.7114 1 0.7114 1
10 2 3.0575 2 −0.7631 1 0.7631 1
112 2 2.0876 [2, −∞], [−∞, +∞] −0.7631 0.1044 0.7631 1.8956
122 2.281 2.8741 [+∞, −∞] −0.6329 0.4182 0.9001 1.3695
132 2.056 1.7935 −∞ −0.5575 0 0.7377 1.9669
142 1.974 1.4018 −∞ −0.5548 −0.0368 0.7133 ±2
152 2 −0.2960 [−∞, 2] −0.7631 −0.6068 0.7631 −1.3932
16 2 −0.4367 2 −0.7631 −1 0.7631 −1
171 2 −0.3505 [2, +∞] −0.7631 −1.3104 0.7631 −0.6896
181 2 1.4845 +∞ −0.6736 ∓2 23.872 −1.9581
191 2 2.9712 [+∞, 2] −0.7631 1.3104 0.7631 0.6896
20 2 3.0575 2 −0.7631 1 0.7631 1
21 5/2 3.0392 −2 −0.7991 1 0.7991 1
22 3 3.0285 2 −0.8255 1 0.8255 1
232 3 2.5673 [2, −∞], [−∞, +∞] −0.8255 1.6657 0.8255 1.6657
242 3.347 2.9712 [+∞, −∞] −0.7634 1.3099 0.9507 1.1765
252 3.088 1.4845 −∞ −0.6736 ±2 0.7548 1.9214
262 2.990 1.4018 −∞ −0.6718 −1.9985 0.7133 ±2
272 3 −0.5544 [−∞, 2] −0.8255 −1.2358 0.8255 −1.2358
28 3 −0.6057 2 −0.8255 −1 0.8255 −1
291 3 −0.5646 [2, +∞] −0.8255 −0.7886 0.8255 −0.7886
303 2.858 −0.2960 +∞ −0.7631 −0.6067 1.0894 −1.0821
313 2.973 1.4018 +∞ −0.5548 −0.0368 2.0701 −2.4830
323 3.111 1.7935 +∞ −0.5575 0 1.5137 −2.6606
333 3.575 2.8741 [+∞, −∞] −0.6329 0.4182 1.1566 −1.1354
343 3.103 2.0876 [−∞, +∞] −0.7631 0.1044 1.4578 −2.6859
351 3 2.9874 [+∞, 2] −0.8255 0.7885 0.8255 0.7885
36 3 3.0285 2 −0.8255 1 0.8255 1
37 7/2 3.0216 −2 −0.8457 1 0.8457 1
38 4 3.0170 2 −0.8618 1 0.8618 1
392 4 2.7447 [2, −∞], [−∞, +∞] −0.8618 0.4786 0.8618 1.5214

Moreover, the extremal orbits described above

(4.2)

in which regression (folding) or closure of the corresponding characteristic of the generating family is possible, have
been isolated.2 Bifurcation of the intersecting basic families occurs in the special solutions (4.1), that is, the generating
family consists of pieces of the basic families bounded by the special solutions. The nature of these bifurcations has
been discussed20,21 but has not been so for studied in all cases.

The trace Tr = ±∞ for the generating families of periodic solutions of the second form (that is, with collisions of
the bodies P3 and P2). A change in the sign of Tr only occurs in special and extremal solutions for families which
have periodic solutions consisting of a single arc-solution of the families S (that is, Ai, Bj or Ckl).44 For families
of periodic solutions consisting of more than a single arc-solution and, besides these, other sites where the sign of
the trace Tr changes are also possible, but nothing is known about them at the present. However, in the case of a
regular Hamiltonian system at the locus of the intersection of two families of periodic solutions, the trace Tr = 2
for one family and Tr = 2cos(2�/q) for the other family, where the natural number q is the order of the resonance
and the multiplicity of the intersection. Single-piece generating families can therefore only intersect for the special
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solutions (4.1) and extremal solutions (4.2) while multipiece generating families can also intersect for as yet unknown
solutions.

4.4. Examples of generating families [Refs. 14,20; Ch. 1]

The family m begins as a part of the family Ir with a from ∞ to 1 and with ẽ = −1. When a = 1, it passes into a part
of the family A0 with ẽ < −1, including segments of hyperbolic orbits. Here, Tr = −2 and a = 1 and Tr = −∞ for the
family A0 from a = 1 up to the extremal orbit A0(−1).43

In the orbit A0(−1), the trace Tr jumps over from −∞ to +∞ and, subsequently, Tr = +∞.
The family c begins from the fixed point L1 as family c of Hill’s problem and then passes into a part of the family

B1 with a ≤ 1 and |ẽ| ≥ 1 from ẽ = 1 to ẽ = −1 and a = 1, where it ends as a double family in the family h.
The family a starts from the fixed point L2 as family a of Hills problem and then passes into a part of the family B1

with a ≥ 1 and |ẽ| ≤ 1 from ẽ = 1 to E1/2(t). Here, the family B1 intersects the family A0 and with another part of the
family B1. The family B1 + 2A0 subsequently proceeds. In this case, in the family A0 the values of N change from ½ to
1 and the values of the Jacobi constant C decrease from -1 while, in the family B1, the values of N decrease from ½ to a
value N′, which corresponds to C = -1. Suppose that, in the family B1 when N = N′ and C = −1, we have a = a′, ẽ = ẽ′.
Then, a piece of the family B1 + B1 proceeds from C = -1 up to the value C = C′′ which corresponds to the extremal
arc-solution B1(−1),43 where a = a′′ and ẽ− = ẽ′′. In this case, the value of C is the same for two orbits of the family
B1 but they belong to different parts of the family B1: in one orbit 1 ≤ a ≤ a′′ and −1 ≤ ẽ ≤ ẽ′′ and, in the other orbit,
a′′ ≤ a ≤ a′ and ẽ′′ ≤ ẽ ≤ ẽ′. The family finishes as a double family in the extremal orbit B1(−1).

The family b begins from the fixed point L3 as the family E−
1 from ẽ = −1 to ẽ = −1 and terminates here as a

double family in the family h.
The family f begins as the family f of retrograde circular orbits of the two-body problem for P3 and P2. It then passes

into the family f of Hills problem and, then, into the family E+
1 from ẽ = 1 to ẽ = −1. Here, it passes into a part of

the family B1 with a ≥ 1 from a = 1, ẽ = −1 to the orbit E1/3(0) and, subsequently, into the family E+
1/3 up to the orbit

E1/3(2), into the family B1 up to the orbit E1/5(0), into the family E+
1/5 up to the orbit E1/5(2), into the family B1 up to

the orbit E1/7(0), and so on.
The family g starts as the family g of the direct circular orbits of the two-body problem of P3 and P2. It then passes

into the family g+ of Hills problem. For the solution M, it passes into the family g′
+ of Hills problem. It then passes

into the piece of the family B2 from a < 1 up to a = 1, ẽ = −1. Here, it passes into the family T1 + T1, each orbit of
which is formed by two different orbits of the family T1 which are symmetric to one another about the x1 axis. This
piece terminates when ã = 1, ẽ = 1 where it passes into the family g− of Hills problem. For the solution M, it passes
into the family g′− of Hills problem which is continued from ã = 1, ẽ = 1 by the piece of the family B2 with a > 1. Its
further structure has been described (Ref. 20, Section 10.2.5) but the termination of the family is unknown.

The family l begins as part of the family Id with a ∈ (∞, 22/3], that is, with N ∈ (0, 1/2]. After the orbit Id(1/2), the
family passes into the family E−

1/2 up to the orbit of intersection E1/2(1), where it passes into the family A0 + B1.
Perturbations of the generating families are poorly understood. Only the shift of the trace Tr for the families EN (Ref.

2, Fig. 74) and, also the perturbations of the trace Tr and period T in the families EN (Ref. 2, Appendix, Table 2) are
known. The perturbations of the generating families have been traced when � ≈ 10−3 (Ref. 14) and � ≈ 10−2 (Ref. 15).

We next consider the evolution of the two families h and i as � increases from 0 to ½. We recall that an orbit is said
to be critical if either Tr = ±2 in it or there is a collision of the body P3 with the body P1 or P2 or the Jacobi constant
has an extremum along the family in the case of fixed �.

5. The family h

The family h starts with retrograde circular orbits of infinitesimal small radius about the body P1 of larger mass.

5.1. The generating family h (μ = 0)

The generating family h was initially described (Ref. 14, § 3) as the family IR+ and, subsequently, (Ref. 2, Section
10.2.6) as the family h.
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Fig. 6.

Data for 16 critical orbits of the calculated part of this family are shown in Table 1: the number of an orbit k, the
normalized period of the orbit T/(2�), the value of the Jacobi constant C, the trace Tr (or the interval of its change),
the initial points of the orbit in the astronomical coordinates ã(0) and ẽ(0) according to relations (3.12) and the point
of the orbit over a half period ã(T/2), (for k = 2, 9, 16, the value of ã(T/2) is undefined).

The characteristics of the family in the coordinates ã, ẽ are shown in Fig. 6. The generating family begins as part
of the family Ir of retrograde circular orbits around the body P1 of unit mass. This part is terminated by orbit 1, where
the family h passes into the part of the family A0 with ẽ > −1 up to orbit 4. Here, a collision with the body P2 occurs
in orbit 2 and this collision persists when � > 0 and, in orbit 3, the Jacobi constant C reaches a maximum. In orbit 4,
the family h becomes the family E+

1/2 up to orbit 6. At the same time, there is a collision with the body P1 in orbit 5.
From orbit 6, the family h continues as the family A1 up to orbit 11. Here, the Jacobi constant C reaches a minimum
in orbit 9. From orbit 11, the family h continues as the family E+

1/4 up to orbit 13. Here, a collision with the body P1

occurs in orbit 12. From orbit 13, the family h continues as the family A0 up to the intersection with the family E+
1/6

while the Jacobi constant C reaches a minimum in orbit 14; a collision with the body P2 occurs in orbit 16. On the
whole, the family h consists of the pieces

The first such piece (k = 1) and the beginning of the second piece (k = 2) have been described above.

5.2. Evolution of the family h as μ increases from 0 to 1/2

For � = 0.00095388, which corresponds to the Sun - Jupiter case, the family h was calculated (Ref. 14, § 4) as the
family IR + J (see also Ref. 45, § 2 and Ref. 22, § 7). In the plane ã, ẽ, the characteristics of this family barely differ from
the characteristics of the generating family shown in Fig. 6. The family h was calculated for � = 0.1 and � = 0.2,45 and
for � = 0.3, 0.4, 0.5.46 The characteristics of the family h are shown in Fig. 7 when � = 0.1, 0.3 and 0.5. The evolution

Fig. 7.
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Fig. 8.

of the family h as � increases can be seen and, in this case, no new singularities appear and self-bifurcations do not
occur. For � ≈ 0.012, the family h was calculated15 as the family A1.

6. The family i

The family i is started by direct circular orbits of infinitesimal small radius around the body P1 of larger mass.
Unlike the family h, described in Section 5 and which is simply arranged for all � ∈ [0, 0.5], the family i has rather
complicated structure.

6.1. The generating family i (μ = 0)

The initial part has been successively described in (Ref. 11, § 20, Section 10.2.7 and Ref. 47, Section 1.1). The
bifurcations of the family Id with the families E(p+1)/p have been described in Subsection 4.2.

Data on the initial critical orbits of this family, constructed in an analogous way to Table 1, are shown in Table 2,
where the subscript m in the number km indicates the number of arc-solutions from which this orbit is constituted.

The characteristics of the family in the system of coordinates ã, ẽ are shown in Fig. 8. The numbers l of pieces
Kl from which the start of the generating family is composed are indicated. Some segments of the characteristics are
identical: in the left characteristic K3 ⊂ K7 ⊂ K16 and K9 ⊂ K13, and in the right characteristic K3 ⊂ K9 ⊂ K16 ⊂ P∗∗

2
and K7 ⊂ K13.

K1. The family Id from a = 0 to orbit 2, that is, Id(2). Here a = |ã| ∈ (0, 2−2/3), ẽ = 1, that is, e = 0, C ≥ 3.174,
T = 2�(N − 1)−1, Tr = 2cosT.

K2. The family K±
2 from Id(2) to E2(−0) (orbit 51). Orbit 3, where the body P3 collides with the body P1, is located

in it. After this, the family i consists of triple orbits with a retrograde motion. In particular, when ẽ = −1, the
family i contains orbit 4 which is a triply passed orbit of the family Ir, that is, h. After this orbit when ẽ > −1,
this piece of the family i will be the family E−

2 and, up to this orbit, it was the family E+
2 . Here, T = 2� and Tr = 2.

K3. The family C12 with N > 2, that is, with a < 2−2/3 from E2(−0) to E2(+0), that is, orbit 71. When ẽ = 0, this piece
contains the orbit 61 in which the body P3 collides with the body P1. When the family passes through the orbit
61, the triple retrograde orbits pass into single direct orbits (ẽ > 0). Here Tr = +∞.

K4. The family E−
2 from E2(+0) to Id(2) (orbit 8, which is identical to orbit 2). In this piece, T = 2� and Tr = 2.

K5. The family Id from Id(2) to Id(3/2), that is, of the orbit 10; T = 2�(N - 1)−1, Tr = 2cosT.
K6. The family E+

3/2 from Id(3/2) to E3/2(−1), that is, of the orbit 112; T = 4�, Tr = 2.
K7. The family C12 + B1 from E3/2(+1) to E3/2(−1), that is, of the orbit 152. Each orbit consists of two arc-solutions:

one from the family C12 and the other from the family B1. We shall subsequently denote the piece of the
generating family of periodic solutions, each orbit of which consists of a single arc-solution of the family Ck,k+1



950 A.D. Bruno, V.P. Varin / Journal of Applied Mathematics and Mechanics 71 (2007) 933–960

and l identical arc-solutions of the family B1, by Ck,k+1 + lB1. Here, the value of the Jacobi constant C is the
same in them. The orbit 122 includes the extremal orbit C12(1), where C reaches a maximum value. In orbit 122,
the right-hand characteristic of the family i reaches a maximum with respect to ã and a minimum with respect to
ẽ after which it returns back along the characteristic of family B1, that is, it has a cusp. In orbit 132, the body P3
collides with the body P1 on an arc-solution from the family C12 while, in orbit 142, the body P3 collides with
the body P1 in an arc-solution of the family B1, after which the direct motion changes to a retrograde motion.
Here, the trace Tr in orbit 112 falls from 2 to −∞, it then jumps up to +∞ and remains at this level up to orbit
122 where it falls to −∞ and remains the same up to the end of this piece.

K8. The family E±
3/2 from E3/2(−1) to E3/2(−0), that is, of the orbit 171; T = 4�, Tr = 2. Orbit 16 is a quintuple circular

orbit from the family Ir, that is, h. After it, the family E+
3/2 passes into the family E−

3/2.
K9. The family C23 from E3/2(−0) to E3/2(+0), that is, of the orbit 191. In orbit 18, there is a collision between the

body P3 and the body P1 and the direction of the motion changes. Here Tr = +∞.
K10. The family E−

3/2 from E3/2(+0) to Id(3/2) (orbit 20 is identical to orbit 10); T = 4�, Tr = 2.

K11. The family Id from Id(3/2) to Id(4/3) (orbit 22); T = 2�(N − 1)−1, Tr = 2cosT.
K12. The family E+

4/3 from Id(4.3) to E4/3(+1) (orbit 232); T = 6�, Tr = 2.
K13. The family C23 + B1 from E4/3(+1) to E4/3(−1) (orbit 272). The orbit 242 includes the extremal orbit C23(1). In

orbit 242, the right-hand characteristic (going along the characteristic of the family B1) has a cusp. Orbits 252
and 262 are collision orbits. Here, the trace Tr in orbit 242 falls from 2 to −∞ and then jumps to +∞. In orbit
242, it jumps to −∞ and remains so up to the end of this piece.

K14. The family E+
4/3 from E4/3(−1) to E4/3(−0) (the orbit 291) including the sevenfold orbit Ir(4/3) (orbit 28); T = 6�,

Tr = 2.
K15. The family C34 from E4/3(−0) to E3/2(−1) (orbit 303); Tr = +∞.
K16. The family C12 + 2B1 from E3/2(−1) to E3/2(+1) (orbit 343), including the collision orbits 303 and 313 and the

extremal orbit 333. Here, Tr = +∞ up to orbit 333, where it jumps to −∞ while, in orbit 343, it jumps to +∞.
K17. The family C34 from E3/2(+1) to E4/3(+0) (orbit 351); Tr = +∞.
K18. The family E−

4/3 from E4/3(+0) to Id(4/3) (orbit 36 which is identical to orbit 22); T = 6�, Tr = 2.
K19. The family Id from Id(4/3) to Id(5.4) (orbit 38; T = 2�/(N − 1), Tr = 2cosT.
K20. The family E+

5/4 from Id(5/4) to E5/4(+1) (orbit 392); T = 8�, Tr = 2.

A more complete description47 of the initial segment of the generating family and a description of the whole of
this family are available. The point is that the initial segment which has already been described consists of cycles,
each of which consists of a single piece of Idp and several pieces of the families E±

(p+1)/p and S. In this case, the

cycle finishes in the same finite orbit of the piece Idp from which the piece of the family E±
(p+1)/p departed. The first

cycle includes the pieces K1 − K4. The second cycle consists of the pieces K5 − K10 and the third cycle consists of
the pieces K11 − K18. The pieces K19 and K20 form the beginning of the fourth cycle. The whole of the generating
family i consists of an infinite number of such cycles, the structure of which becomes more complex as the number
p increases. In particular, all cycles, starting from the second cycle, have segments of the right-hand characteristic
passing through the characteristic of the family B1 and segments going along the curve P∗∗

2 corresponding to the body
P2. These segments have a zig-zag structure which is shown schematically in Fig. 9 for segments passing through the
characteristic of the family B1. The number n of changes in the directions of the characteristics (zig-zags) is plotted
along the ordinate axis in Fig. 9.

We will now consider the evolution of the family i as � increases from zero. This is more conveniently done
separately for each pair of cycles.

6.2. Evolution of the first and second cycles

The calculated fragments of the right characteristic of the family i when � = �J = 9.5388 · 10−4, � = 2 · 10−3,
� = 3 · 10−3 are shown in Fig. 10, a - c respectively. It is clear that the first zig-zag of the characteristic as �
increases descends and then bends to the left and approaches the left-hand lower part of this fragment. When
� = �′

1 ≈ 4.1313 · 10−3, both parts of the characteristic are encountered (Fig. 10, d) and bifurcation occurs. When
� > �′

1, a closed family is formed which we denote by i1, and its characteristics are the closed curves shown in Fig. 11,
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Fig. 9.

a for � = �M = 1.2155 · 10−2, � = 2.3 · 10−2. As � increases, the characteristics of the family i1 decrease in size and,
when � = �′′

1 ≈ 3.66863 · 10−2, the family i1 contracts into the single orbit shown by the point in Fig. 11, a. Conse-
quently, the family i1 only exists in the interval � ∈ [�′

1, �′′
1]. The unclosed characteristics correspond to � = 5 × 10−3

in Fig. 11, a. It is seen that, compared with Fig. 10, d, just one further bifurcation has occurred between the unclosed
characteristics in the interval � ∈ (�′

1, 5 · 10−3).

6.3. Evolution of the second and third cycles

The calculated characteristics of parts of the second and third cycles when � = 5 × 10−4 are shown in Fig. 11,b. The
evolution of the zig-zag third cycle, which is analogous to the evolution of the zig-zag of the second cycle can be seen.
When � = �′

2 ≈ 6.61705 · 10−4, bifurcation takes place, which is shown in Fig. 11,c. When � > �′
2, a closed family is

formed which we denote by i2. As � increases, the characteristics of the family i2 decrease in size; they are shown in

Fig. 10.
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Fig. 11.

Fig. 11, d for � = 7 · 10−4, � = �J, � = 2.5 · 10−3, � = 5 · 10−3 and, finally, when � = �′′
2 ≈ 5.27272 · 10−3, the family

i2 contracts into a single orbit, shown by the dot in Fig. 11, d. The unclosed characteristic below to the left in Fig. 11,
d corresponds to � = 7 × 10−4. Consequently, the family i2 only exists in the interval � ∈ [�′

2, �′′
2].

A closed family i3 is formed in a similar manner from the third and fourth cycles when � = �′
3 ≈ 2.15292 · 10−4,

which exists up to � = �′′
3 ≈ 1.88241 · 10−3. Hence, the family i3 exists when � ∈ [�′

3, �′′
3]

The family i4, which arises from the fourth and fifth cycles when � = �′
4 ≈ 9.54305 · 10−5 and terminates when

� = �′′
4 ≈ 8.86552 · 10−4, was also calculated.

6.4. Generalizations

6.4.1. Hypothesis
Two sequences �′

k, �′′
k, �′

k < �′′
k, k = 1, 2, . . ., which decrease monotonically to zero, exist such that, when �

increases, closed families ik are separated from the family i, which only exist in the intervals � ∈ [�′
k, �′′

k].
The initial parts of the sequences {�′

k}, {�′′
k} are shown in Table 3, where the empirical asymptotic forms of their

normalized values are also indicated.
The families i2 and i3 have been calculated10,11 when � = �J, which corresponds to the Sun - Jupiter case. The

characteristic of the family i2 is shown in Fig. 11, d. The closed locally multiple families associated with them have
been calculated in Ref. 12. When � = �M ≈ 1.2155092 · 10−2, which corresponds to the Earth - Moon case, there is a
closed family i1 (Fig. 11,a) which was not indicated when calculating the family i for �M.15

Table 3

k �′
k �′′

k �′
k/�′

1 �′′
k/�′′

1 k−8/3

1 4.131 · 10−3 3.669 · 10−2 1 1 1
2 6.617 · 10−4 5.273 · 10−3 0.160 0.144 0.157
3 2.153 · 10−4 1.882 · 10−3 0.052 0.051 0.053
4 9.543 · 10−4 8.866 · 10−4 0.023 0.024 0.025
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6.5. External annulus of almost circular orbits

The family i describes all of the almost circular periodic orbits of the direct motion with a > 1, that is, from an
internal annulus with respect to the body P2. The periodic orbits of the direct motion from an external annulus to the
body P2 do not belong to a single family and are distributed in a denumerable set of families.

The families of periodic solutions, including the pieces

of the perturbed family Id of circular orbits with a direct sidereal motion for p = −2, −3, . . ., −7 were calculated
for � = 5.178 × 10−5. The characteristics of the calculated families in the plane ã, ẽ consist of horizontal fragments
corresponding to the families Idp, vertical fragments corresponding to the families Ep/(p−1) (their bifurcations agree
with Fig. 5) and inclined fragments going along the characteristics of the families Ai and Bj in Fig. 4, that is, which are
located close to the characteristics of the generating families. An exception to this rule is the last family: it is closed,
the value of � indicated for it is not small and is already sufficient for self-bifurcation (as in the case of the family i)

7. Horseshoe-shaped orbits and orbits in the form of tadpoles

7.1. The neighbourhood of fixed points (Ref. 2, Ch. VIII, § 5; Ref. 28 § 2)

The synodic two-body problem for P1 and P3 has a one-parameter family of fixed points

(7.1)

that is, a = 1, e = 0, n = 1. In the neighbourhood of this family, we introduce the local coordinates y, z1, z2, z3 as follows
(Ref. 2, Ch. VIII, § 3). We start from the Delaunay elements

where 	̃ is the argument of the pericentre. The system of canonical coordinates

is called the first system of Poincaré elements. Finally, the system of canonical coordinates

is called the second system of Poincaré elements.
The family (7.1) is isolated by the equalities L = 1, z2 = z3 = 0. The coordinates

(7.2)

will be local for the family (7.1). Hamiltonian function (1.2) has the form

(7.3)

(r and h are the polar coordinates of the body P3 in the plane x1, x2). Here, �2 = z2
2 + z2

3.
The function R is expanded in a convergent series of the form
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with integers m, n, k and l and non-negative m, k and l.
According to calculations (Ref. 2, Ch. VII, Section. 5.B), we have

(7.4)

In the coordinates (7.2), the family of fixed points is given by the equations

and the coordinate y is the angle of a fixed point in the plane x1, x2. According to formula (7.4), there is a singular
perturbation when y = 0 as this point falls in the body P2. Consequently, there is a broken circle in the restricted problem
when � = 0, that is, an interval y ∈ (0, 2�) of fixed points.

It has been shown (Ref. 2, Ch. VIII, Section. 3.B) that only three of them are generating points:

The three fixed points L3, L4, L5, which are the Lagrange solutions, correspond to them. A single generating family
of periodic solutions: E−

1 , G+
1 and G−

1 appears from each such point respectively. All the solutions of the generating
families have a period T = 2� and a trace Tr = 2. When � > 0

The values of ˙̃	 and Tr1 have been presented for the families G1 and E−
1 (Ref. 2, Appendix; Tables 1 and 2). When

� = 0, the families G±
1 are intersected by the family E−

1 when e = 0.917 (Ref. 2, Fig. 17).
We will now study the periodic solution of the restricted problem for small � > 0, z1, z2, z3 when y ∈ (0, 2�). We

shall assume that zi = O(
√

�) and select the terms in Hamiltonian function (7.3) up to O(�) inclusive. This first
approximation to the Hamiltonian function and the corresponding Hamiltonian system have the form

(7.5)

(7.6)

We make the substitution

(7.7)

Not being canonical, that is, not retaining the Hamiltonian character of the whole system, it transfers system (7.6) the
system

(7.8)

(7.9)

where a prime denotes differentiation with respect to �. Consequently, there is a first integral � = const in the case
of subsystem (7.8). The integral curves of subsystem (7.9), that is, the contour lines of the function H, are shown in
Fig. 12. There are three types of orbits: 1) the librations about the point L4 or the point L5 are “tadpoles”, 2) asymptotic
to the point L3, 3) librations of the asymptotic solutions in a “figure of eight” with horseshoe-shaped integral curves.
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Fig. 12.

7.2. Periodic solutions of system (7.8), (7.9)

With the exception of the fixed points and the asymptotic solutions, all the remaining solutions of subsystem (7.9)
are periodic. We will now find their periods. Subsystem (7.9) has the form

(7.10)

We put v2 = 2 − 2cosy. Then, |v| ≤ 2 and

(7.11)

The contour lines of the function H are shown in Fig. 13 in z, v ≥ 0 coordinates. The point (0, 1) is a fixed point
which corresponds to the point L4. The point L3 corresponds to the point (0, 2). At this point and on the asymptotic
curve, H = −3/2. The asymptotic curve intersects the v axis when v = √

2 − 1. In the contour lines of the function
H = const we have

Fig. 13.
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Fig. 14.

and, therefore, from the first equation of system (7.10) and equalities (7.11) we obtain

(7.12)

For the point z = 0, v = v0, we find

(7.13)

On the v axis, the curve H = H0 = const has a further two points: the roots of the equation 2 − v2
0v − v0v

2 = 0 and, of
these, only one is positive

We will integrate Eq. (7.12) along a contour line from v0 ∈ (0, 1) to v2, where v2 = 2 if v0 ∈ (0,
√

2 − 1) and v2 = v1
if v0 ∈ (

√
2 − 1, 1). When account is taken of formula (7.13), we obtain

(7.14)

In the case of horseshoe-shaped orbits v0 ∈ (0,
√

2 − 1) and the period T (v0) = 4I(v0). For orbits in the shape of

tadpoles v0 ∈ (
√

2 − 1, 1) and the period T (v0) = 2I(v0). A graph of the function T̃ (v0)
def=T (v0)/(2�) is shown in

Fig. 14. Here, T̃ (v0) → 2/(3
√

3) ≈ 0.385 if v0 → 1. When v0 → √
2 − 1 from both sides, T̃ (v0) → +∞.

The solutions of system (7.8), (7.9) are situated in the invariant tori

and in the invariant manifold � = 0. The frequency of the periodic solutions in this manifold is equal to 	1 = 1/T̃ (v0)
and the frequency of the external rotation through an angle  is equal to 	2 = −1/

√
�.

We put

(7.15)
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7.3. Local families of periodic solutions

We now return to system (7.6). The structure of its solutions is the same as in the case of system (7.8), (7.9).
In particular, it has the invariant manifold �2 = 0 filled with periodic solutions with the frequency ratio (7.15). The
complete system (7.3) is a perturbation of system (7.6). Under such perturbations, bifurcations of the families of
periodic solutions arise for those solutions from the manifold �2 = 0 for which the frequency ratio (7.15) is an integer.
This occurs for the values of v0 for which

(7.16)

It can be seen from Fig. 14 that, for any � ∈ (0, 1/2), unique values

exist for which equality (7.16) with n > 0 and n > 2/(3
√

3�) are satisfied respectively, and there is therefore a bifurcation
horseshoe-shaped orbit for each natural n and a bifurcation orbit in the shape of a tadpole close to the point L4 but only
for each integer n > 2/(3

√
3�) (and, similarly close to the point L5).

7.4. The global structure of families with horseshoe-shaped orbits

Periodic solutions with horseshoe-shaped orbits are symmetric and they therefore intersect the plane of symmetry
II, and the characteristics of the families of such solutions form curves in the II plane. The arrangement of these
characteristics for small ẽ − 1 is shown schematically in Fig. 15, which is obtained if the results in Ref. 48 are plotted
in ã, ẽ coordinates. We call families, with characteristics in ã, ẽ coordinates containing a horizontal segment ẽ ≈ 1,
basic families and we denote them by FH. If these families are continued, they intersect with the family E−

1 as locally
multiple families.

Taking into account the local results of Subsection 7.3 and Ref. 48 and the global results of, Refs. 49,50 we obtain
the arrangement of the characteristics of the natural basic families with horseshoe-shaped orbits FH shown in Fig. 15
in ã, ẽ coordinates. Here, the strip ẽ ∈ [−1, −2] is put on top for continuity of the characteristics. The characteristics of
two natural closed families are shown which periodically repeat themselves both within and outside the annulus, which
has been depicted. The vertical segment is the characteristic of the family E−

1 which starts from the fixed point L3. The
numbers m at the positions of its intersection with the characteristics of the families FH indicate the local multiplicity
of these families; they are located to the right. The number of a curve (from 1 to 8) is placed in each quadrant of Fig. 15
above each curve. The same numbers of the non-horizontal segments of the characteristics indicate the segments of the
two characteristics corresponding to a single segment of a family. The segments of the characteristics with the numbers
1, 2, 3, 4 belong to a single family and those with the numbers 5, 6, 7, 8 to another family. All of this is in accord with
the numerical results for horseshoe-shaped orbits.4,5,48

7.5. The global structure of families with orbits in the shape of tadpoles

In principle, the structure of these families is similar to the structure of the families of horseshoe orbits. The basic
difference lies in the fact that the tadpole orbits are not symmetrical and it is impossible to depict the characteristics of
their families in the plane of symmetry II. However, they can be depicted as curves in a three-dimensional section � of
phase space (Ref. 2, Ch. III, Section 2.E) with a, �, ẽ coordinates. Since each such family intersects with the family G1
as a locally m-fold family, 2m characteristics correspond to it. Only two of these characteristics exist for small |ẽ − 1|,
and we call them the principle characteristics of the family. We will now consider the projections of the principle
characteristics onto the half-plane a, ẽ. As before, we shall call those families for which these projections contain a
horizontal segment ẽ ≈ 1 basic families FT. The projections of the principal characteristics of the basic families FT
are shown schematically in Fig. 16 which is similar to Fig. 15. The vertical segment in Fig. 16 is the projection of
the characteristic of the family G1, the point a = ẽ = 1 is the projection of the fixed point L4 and an increase in the
multiplicity of the intersections of the families FT with the family G1 in a reverse direction: from the inside to the
outside.
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Fig. 15.

Fig. 16.
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In traditional terminology, the family G1 is the family of short-period solutions starting from the fixed point L4, the
horizontal segments of the characteristics in Fig. 16 correspond to the family of long-period solutions starting from the
fixed point L4 when � > 0 and the basic families FT themselves are the bridges of the resonance periodic solutions.51

Remark. The periodic solutions considered in Section 7 do not have generating solutions in the basic limit problem
(nor in the remaining limit problems either). Although the families ik, considered in Section 6 do have a generating
family i, they are very different from it and they cannot be considered as just perturbations of the generating family.
These examples show that the generating solutions of the basic limit problem do not suffice to describe the families of
periodic solutions of the restricted problem for small �.

Acknowledgements

This research was supported financially by the Russian Foundation for Basic Research (05-01-00050).
We wish to dedicate this paper to the 300-th anniversary of the birth of Leonhard Euler.

References

1. Euler L. Theoria Motuum Lunae. Typis Academiae Imperialis Scientiarum, Petropoli, 1772. Reprinted in: Opera Omnia, Ser. 2/Ed. L.
Courvoisier, V. 22. Orell Füssli Turici, Lausanne, 1958, 411 p.

2. Bruno AD. The Restricted Three-body Problem: Plane Periodic Orbits. Berlin-New York: Walter de Gruyter; 1994.
3. Bruno AD. Periodic solutions to a Hamiltonian system. Cosmic Research 2006;44(3):245–57.
4. Llibre J, Olle M. The motion of Saturn coorbital satellites in the restricted three-body problem. Astron Astrophys 2001;378:1087–99.
5. Llibre J, Olle M. Horseshoe periodic orbits in the restricted three-body problem. In: Delgado J, et al., editors. New Advances in Celestial

Mechanics and Hamiltonian Systems. Dordrecht: Kluwer; 2004. p. 137–52.
6. Franklin FA, Colombo G. A dynamical model for the radial structure of Saturn’s ring. Icarus 1970;12(3):338–47.
7. Kotoulas T, Voyatzis G. Comparative study of the 2:3 and 3:4 resonant motion with Neptune: An application of symplectic mappings and low

frequency analysis. Celest Mech and Dynam Astron 2004;88(4):343–63.
8. Voyatzis G, Kotoulas T, Hadjidemetriou JD. Symmetric and nonsymmetric periodic orbits in the exterior mean motion resonances with Neptune.

Celest Mech and Dynam Astron 2005;91(1–2):191–202.
9. Voyatzis G, Kotoulas T. Planar periodic orbits in exterior resonances with Neptune. Planetary and Space Sci 2005;53(1–2):1189–99.

10. Colombo G, Franklin FA. On a family of periodic orbits of the restricted three-body problem and the question of the gaps in the asteroid belt
and in Saturn’s ring. Astron J 1968;73(2):111–23.

11. Bruno AD. Single periodic solution of the restricted three-body problem in the Sun - Jupiter case. Moscow: Preprint No. 66. Inst. Prikl. Mat.
im. M. V. Keldysha; 1993.

12. Bruno AD. Double periodic solutions of the restricted three-body problem in the Sun - Jupiter case. Moscow: Preprint No. 67. Inst. Prikl. Mat.
im. M. V. Keldysha; 1993.

13. Bruno AD. Multiple periodic solutions of the restricted three-body problem in the Sun - Jupiter case. Moscow: Preprint No. 68. Inst. Prikl.
Mat. im. M. V. Keldysha; 1993.

14. Bruno AD. Zero-fold and retrograde periodic solutions of the restricted three-body problem. Moscow: Preprint No. 93. Inst. Prikl. Mat. im.
M. V. Keldysha; 1996.

15. Broucke MR. Periodic orbits in the restricted three-body problem with Earth-Moon masses. NASA Techn. Report 32-1168. Pasadena, 1968.
92 p.

16. Papadakis K, Goudas C. Restricted three-body problem: An approximation of its general solution. P. 1. The manifold of symmetric periodic
solutions. Astrophis Space Sci 2006;305(2):99–124.
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